当前位置:首页 >热点 >Docker 搭建 Elasticsearch、Kibana、Logstash 同步 MySQL 数据到 ES 作为 Elastic Stack 的数据核心

Docker 搭建 Elasticsearch、Kibana、Logstash 同步 MySQL 数据到 ES 作为 Elastic Stack 的数据核心

2024-06-30 20:59:09 [百科] 来源:避面尹邢网

Docker 搭建 Elasticsearch、搭建到Kibana、数据Logstash 同步 MySQL 数据到 ES

作者:王振军 数据库 MySQL Elasticsearch 是搭建到一个分布式、RESTful 风格的数据搜索和数据分析引擎,能够解决不断涌现出的搭建到各种用例。作为 Elastic Stack 的数据核心,Elasticsearch 会集中存储您的搭建到数据,让您飞快完成搜索,数据微调相关性,搭建到进行强大的数据分析,并轻松缩放规模。搭建到

一、数据前言

在数据量大的搭建到企业级实践中,Elasticsearch显得非常常见,数据特别是搭建到数据表超过千万级后,无论怎么优化,还是有点力不从心!使用中,最首先的问题就是怎么把千万级数据同步到Elasticsearch中,在一些开源框架中知道了,有专门进行同步的!那就是Logstash。在思考,同步完怎么查看呢,这时Kibana映入眼帘,可视化的界面,让使用更加的得心应手哈!!这就是三剑客ELK。不过大多时候都是进行日志采集的,小编没有用,只是用来解决一个表的数据量大,查询慢的!后面小编在专门搭建日志采集的ELK。

Docker 搭建 Elasticsearch、Kibana、Logstash 同步 MySQL 数据到 ES 作为 Elastic Stack 的数据核心

二、三者介绍

1、Elasticsearch

Elasticsearch 是一个分布式、RESTful 风格的搜索和数据分析引擎,能够解决不断涌现出的各种用例。作为 Elastic Stack 的核心,Elasticsearch 会集中存储您的数据,让您飞快完成搜索,微调相关性,进行强大的分析,并轻松缩放规模。

Docker 搭建 Elasticsearch、Kibana、Logstash 同步 MySQL 数据到 ES 作为 Elastic Stack 的数据核心

2、Kibana

Kibana 是一个免费且开放的用户界面,能够让您对 Elasticsearch 数据进行可视化,并让您在 Elastic Stack 中进行导航。您可以进行各种操作,从跟踪查询负载,到理解请求如何流经您的整个应用,都能轻松完成。

Docker 搭建 Elasticsearch、Kibana、Logstash 同步 MySQL 数据到 ES 作为 Elastic Stack 的数据核心

3、Logstash

Logstash 是免费且开放的服务器端数据处理管道,能够从多个来源采集数据,转换数据,然后将数据发送到您最喜欢的“存储库”中。

三、版本选择

现在最新版就是8.5,最新的教程少和问题未知,小编选择7版本的,求一手稳定哈!

于是去hub.docker查看了一下,经常用的版本,最终确定为:7.17.7

dockerHub官网地址:https://hub.docker.com/_/elasticsearch

官方规定:
安装 Elastic Stack 时,您必须在整个堆栈中使用相同的版本。例如,如果您使用的是 Elasticsearch 7.17.7,则安装 Beats 7.17.7、APM Server 7.17.7、Elasticsearch Hadoop 7.17.7、Kibana 7.17.7 和 Logstash 7.17.7

图片

四、搭建mysql

1、拉去MySQL镜像

sudo docker pull mysql:5.7

图片

2、Docker启动MySQL

sudo docker run -p 3306:3306 --name mysql \
-v /mydata/mysql/log:/var/log/mysql \
-v /mydata/mysql/data:/var/lib/mysql \
-v /mydata/mysql/conf:/etc/mysql \
-e MYSQL_ROOT_PASSWORD=root \
-d mysql:5.7
####这里往下是解释,不需要粘贴到linux上#############
--name 指定容器名字
-v 将对应文件挂载到linux主机上
-e 初始化密码
-p 容器端口映射到主机的端口(把容器的3306映射到linux中3306,这样windows上就可以访问这个数据库)
-d 后台运行

图片

3、Docker配置MySQL

vim /mydata/mysql/conf/my.cnf # 创建并进入编辑
[client]
default-character-set=utf8
[mysql]
default-character-set=utf8
[mysqld]
init_cnotallow='SET collation_connection = utf8_unicode_ci'
init_cnotallow='SET NAMES utf8'
character-set-server=utf8
collation-server=utf8_unicode_ci
skip-character-set-client-handshake
skip-name-resolve

图片

4、Docker重启MySQL使配置生效

docker restart mysql

5、新增数据库

图片

6、新建测试表

DROP TABLE IF EXISTS `sys_log`;
CREATE TABLE `sys_log` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '日志主键',
`title` varchar(50) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT '' COMMENT '模块标题',
`business_type` int(2) NULL DEFAULT 0 COMMENT '业务类型(0其它 1新增 2修改 3删除)',
`method` varchar(100) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT '' COMMENT '方法名称',
`request_method` varchar(10) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT '' COMMENT '请求方式',
`oper_name` varchar(50) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT '' COMMENT '操作人员',
`oper_url` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT '' COMMENT '请求URL',
`oper_ip` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT '' COMMENT '主机地址',
`oper_time` datetime(0) NULL DEFAULT NULL COMMENT '操作时间',
PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 1585197503834284034 CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '操作日志记录' ROW_FORMAT = Dynamic;

SET FOREIGN_KEY_CHECKS = 1;

五、ELK搭建准备

1、创建挂载的文件

es挂载:

mkdir -p /mydata/elk/elasticsearch/{ config,plugins,data,logs}

kibana挂载:

mkdir -p /mydata/elk/kibana/config

logstash挂载:

mkdir -p /mydata/elk/logstash/config

2、ES挂载具体配置

vim /mydata/elk/elasticsearch/config/elasticsearch.yml

输入下面命令:

http.host: 0.0.0.0
xpack.security.enabled: false

http.host:任何地址都可以访问。
xpack.security.enabled:关闭密码认证

3、Kibana挂载具体配置

vim /mydata/elk/kibana/config/kibana.yml

内容:

server.host: 0.0.0.0
elasticsearch.hosts: [ "http://192.168.239.131:9200" ]

elasticsearch.hosts:指向es地址。

4、Logstash挂载具体配置

vim /mydata/elk/logstash/config/logstash.yml

内容:

http.host: 0.0.0.0
xpack.monitoring.elasticsearch.hosts: [ "http://192.168.239.131:9200" ]

记录存放:

touch log
chmod 777 log
vim /mydata/elk/logstash/config/logstash.conf

内容:

jdbc_driver_library:指定必须要自己下载mysql-connector-java-8.0.28.jar,版本自己决定,下载地址:https://mvnrepository.com/artifact/mysql/mysql-connector-java;

statement:如果sql长,可以指定sql文件,直接指定文件所在位置,这里的位置都为容器内部的地址;

last_run_metadata_path:上次记录存放文件对应上方的log。

图片

input { 
stdin {
}
jdbc {
jdbc_connection_string => "jdbc:mysql://192.168.239.131:3306/test?useUnicode=true&characterEncoding=utf8&serverTimeznotallow=UTC"
jdbc_user => "root"
jdbc_password => "root"
jdbc_driver_library => "/usr/share/logstash/config/mysql-connector-java-8.0.28.jar"
jdbc_driver_class => "com.mysql.jdbc.Driver"
jdbc_paging_enabled => "true"
jdbc_page_size => "300000"
statement => "SELECT id, title, business_type, method, request_method, oper_name, oper_url, oper_ip, oper_time FROM sys_log"
schedule => "*/1 * * * *"
use_column_value => false
tracking_column_type => "timestamp"
tracking_column => "oper_time"
record_last_run => true
jdbc_default_timezone => "Asia/Shanghai"
last_run_metadata_path => "/usr/share/logstash/config/log"
}
}

output {
elasticsearch {
hosts => ["192.168.239.131:9200"]
index => "sys_log"
document_id => "%{ id}"
}
stdout {
codec => json_lines
}
}

流水线指定上面的配置文件:

vim /mydata/elk/logstash/config/pipelines.yml

内容:

- pipeline.id: sys_log
path.config: "/usr/share/logstash/config/logstash.conf"

最终/mydata/elk/logstash/config/下的文件。

图片

防止保存没有修改权限,可以把上面建的文件夹和文件赋予修改权限:

chmod 777 文件名称

五、运行容器

1、docker compose一键搭建

在elk目录创建:

vim docker-compose.yml

内容如下:

version: '3'
services:
elasticsearch:
image: elasticsearch:7.17.7
container_name: elasticsearch
ports:
- "9200:9200"
- "9300:9300"
environment:
- cluster.name=elasticsearch
- discovery.type=single-node
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
volumes:
- /mydata/elk/elasticsearch/plugins:/usr/share/elasticsearch/plugins
- /mydata/elk/elasticsearch/data:/usr/share/elasticsearch/data
- /mydata/elk/elasticsearch/logs:/usr/share/elasticsearch/logs

kibana:
image: kibana:7.17.7
container_name: kibana
ports:
- "5601:5601"
depends_on:
- elasticsearch
environment:
I18N_LOCALE: zh-CN
volumes:
- /mydata/elk/kibana/config/kibana.yml:/usr/share/kibana/config/kibana.yml

logstash:
image: logstash:7.17.7
container_name: logstash
ports:
- "5044:5044"
volumes:
- /mydata/elk/logstash/config:/usr/share/logstash/config
depends_on:
- elasticsearch

一定要在docker-compose.yml所在目录执行命令!

运行:

docker compose up -d

图片

完成后可以跳到5进行查看kibana!

2、运行ES

docker run --name elasticsearch -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" -e ES_JAVA_OPTS="-Xms64m -Xmx512m" -v /mydata/elk/elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml -v /mydata/elk/elasticsearch/data:/usr/share/elasticsearch/data -v  /mydata/elk/elasticsearch/plugins:/usr/share/elasticsearch/plugins -d elasticsearch:7.17.7

图片

3、运行Kibana

docker run --name kibana -e ELASTICSEARCH_HOSTS=http://192.168.239.131:9200 -p 5601:5601 -d kibana:7.17.7

图片

4、运行Logstash

docker run -d -p 5044:5044 -v /mydata/elk/logstash/config:/usr/share/logstash/config --name logstash logstash:7.17.7

图片

5、容器完结图

图片

6、访问Kibana

​​http://192.168.239.131:5601/app/home#/​​

图片

六、新建索引

PUT /sys_log
{
"settings": {
"number_of_shards": 1,
"number_of_replicas": 0,
"index": {
"max_result_window": 100000000
}
},
"mappings": {
"dynamic": "strict",
"properties": {
"@timestamp": {
"type": "date"
},
"@version": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},

"business_type": {
"type": "integer"
},
"title": {
"type": "text"
},
"method": {
"type": "text"
},
"request_method": {
"type": "text"
},
"oper_name": {
"type": "text"
},
"oper_url": {
"type": "text"
},
"oper_ip": {
"type": "text"
},
"oper_time": {
"type": "date"
},
"id": {
"type": "long"
}
}
}
}

七、测试

新增几条记录,然后查看Logstash日志

docker logs -f logstash

图片

我们去kibana看一下是否已存在:

输入命令:

GET /sys_log/_search
{
"query": {
"match_all": { }
}
}

我们看到存在6条,和mysql一致!

图片

图片


责任编辑:姜华 来源: 小王博客基地 DockerMySQL

(责任编辑:休闲)

    推荐文章
    热点阅读